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Multigrid methods are applied in order to solve efficiently the nonsparse systems of 
equations that occur in the numerical solution of the following problems from fluid dynamics: 
(1) calculation of potential flow around bodies and (2) calculation of oscillating disk flow. 
Problem (1) is reformulated as a boundary integral equation of the second kind that is 
approximated by a first-order panel method resulting in a full system of equations. This 
method is in widespread use for aerodynamic computations. The second problem is described 
by the Navier-Stokes and continuity equations. By means of the von Karman similarity 
transformations these equations are reduced to a nonlinear system of parabolic equations 
which are approximated by implicit finite difference techniques. From the periodic conditions 
in time one obtains a nonsparse system of equations. For these two problems from fluid 
dynamics the fast convergence of multigrid methods for integral equations is established by 
numerical experiments. 

INTRODUCTION 

Multigrid methods have been advocated by Brandt [I] for solving sparse systems 
of equations that arise from discretization of partial differential equations. 
Convergence and computational complexity of such multigrid techniques have been 
studied since. In [ 21 we have shown that these techniques can also be used advan- 
tageously for the nonsparse systems that occur in the numerical solution of Fredholm 
integral equations of the second kind 

f =Kf+ g, 

where g belongs to a Banach space X and the integral operator K is compact on X. 
Theoretical and numerical investigations show that multigrid methods give the 
solution of (1) in O(N*) operations as N + co, whereas other iterative schemes take 
O(N* log N) operations (where N is the dimension of the finest grid). In practice this 
results in algorihtms for the solution of these integral equations that are significantly 
more efficient than the other schemes. In the present paper we apply multigrid 
methods to the following problems from fluid dynamics. 
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Calculation of Potential Flow around Bodies 

The total velocity potential 4 is assumed to be the superposition of the potential 
#,, due to a uniform onset flow and a perturbation potential #d, due to a doublet 
distribution at the body surface. This approach leads to a Fredholm equation of the 
second kind for the unknown doublet distribution. We introduce a multigrid method 
which makes use of a sequence of grids that are generated by dividing the body 
surface into an increasing number of smaller and smaller panels. On these grids the 
doublet distribution is assumed to be constant over each panel. For a two- 
dimensional (2-D) aerofoil we have applied the multigrid method to the calculation of 
circulatory flow around K&man-Trefftz aerofoils. The use of multigrid techniques 
becomes more preferable for 3-D problems because the number of panels is much 
larger than for 2-D ones. The calculations have been performed for the flow around 
an ellipsoid. From numerical investigations it follows that +3 multigrid cycles are 
sufficient to obtain the approximate solution. 

Calculation of Oscillating Disk Flow 

This application deals with the rotating flow due to an oscillating disk at an 
angular velocity Q sin wr. The Navier-Stokes and continuity equations are reduced 
by means of the von Kirmin similarity transformations to 

(dQ>f, = Kw~lc, + 2K - f 2 + g*, (2) 

(wlfi> g, = (QPW) g,z + %Z - 2fg3 (3) 

h,=f, (4) 

where (f, g, h) is a measure of the velocity vector in a cylindrical polar coordinate 
system (r, 4, z). For a single disk problem the boundary conditions are 

f=h=O, g = sin t at z = 0; f=g=O for z-co. 

In (31 the author has shown that the periodic solution 

(5) 

h(z, 0) = h(z, 2n), g(z, 0) = g(z, 27I) (6) 

can be obtained by implicit finite difference schemes taking the state of rest as an 
initial condition. The transient effects have been eliminated by calculating a 
sufficiently large number of periods. Using the multigrid method we do not simulate 
the physical process, but reformulate problem (2k(6) as 

(f, g, h) = K(f, g, h), (7) 

where K is a nonlinear integral operator. The multigrid method for integral equations 
is used to solve (7). For 0 = 0. lw the computational work has been reduced by a 
factor of 10. 
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CALCULATION OF POTENTIAL FLOW AROUND BODIES 

For potential flow around a 2- or 3-D body there exists a velocity potential 4 
satisfying Laplace’s equation 

A#=0 (8) 

with boundary conditions, 

a# -0 
an,- 

along the boundary S, (9) 

where 8/&z, denotes differentiation in the direction of the outward normal to S and 

$40 + icm for ICI- co, (10) 

with 4, the velocity potential due to a uniform onset flow. If the flow is noncir- 
culatory, we have 4,(C) = % . <, with % the velocity vector of the undisturbed flow. 
Here $ . 5 denotes the usual inner product in R2 or in R3. We represent the velocity 
potential 4 as 

4(C) = 4,(r) + Al(C), 

with #d the double layer potential given by 

(11) 

where m = 2, 3 for the 2- and 3-D case, respectively, and n, is the outward normal to 
the boundary S at the point r. The doublet distribution p is such that 4 satisfies the 
boundary condition 

4-(C)=@ (12) 

where $-- denotes the limit from the inner side to S. Using the Plemelj-Privalov 
formulae (see 141) we obtain the following integral equation: 

(13) 

Assuming the boundary S to be sufficiently smooth, it can be proven that the solution 
of interior Dirichlet problem (12) also satisfies Neumann problem (8t(lO) for the 
exterior of the boundary S. 

Calculation of Circulatory Flow around an Aerofoil 

For circulatory flow around an aerofoil one must introduce a cut to make the 
velocity potential single valued. The Kutta condition of smooth flow at the trailing 
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edge can be satisfied if we construct the cut from the trailing edge to infinity. We 
denote the upper and lower side of the cut by St and S ~, respectively. The contour 
composed of the aerofoil S and the cut is denoted by S + S + S’ . Along the cut 
there exists a constant discontinuity in velocity potential. The jump 
a constant double layer potential with strength ~1’ and p - along S’ 
tively. The difference ,u - -,u’ is equal to the circulation which is 
clockwise direction. 

11 H 
-t 

We can represent the velocity potential 

--,/=I .,- :.- 

by 

$w = g ’ c + & j P(s) COS(k 7 x - 0 
s-tstsc Ix-Cl ds 

or rewritten 

4(C) = p . i + (b&3 + (lPn)@ + -P - > arg(5 - 0 

is represented by 
and S , respec- 

taken positive in 

(14) 

where dd is defined by (11) with m = 2 and xt is the trailing edge. In this section we 
denote by arg(z,/xz) with z,, z2 E Rz the real value of the usual function defined by 
the complex numbers corresponding to Z, and x2. The doublet strength along S 
follows from (12). So far we have not said anything about rut and ,c, but we still 
have to satisfy the Kutta condition. In the present paper we only consider aerofoils 
with nonzero trailing edge angle. For these cases the Kutta condition states that the 
flow speed must be zero at both sides of the trailing edge. Let [’ and [- be points at 
the upper and lower part of the trailing edge. The Kutta condition is satisfied if 

@(i’> + 0 for I<+ - %,I--) 0, m(c) -+ 0 for I<- - z,I-tO. (15) 

where D denotes differentiation in the tangential direction. Application of conditions 
(12) and (15) to Eq. (14) yields the following integral equation: 

with 

(I-WP +m+ -P-l= g, (16) 

,,,=~~/(z) cos(n*‘z-c) dS , 
Ix-Cl 

P(C) = + acid5 - 0 
(17) 

g(T) = -2v . [. 

Numerical Approach 

The contour S is divided into N segments Si such that S = l-)7=, Si and 
Si n Sj = 0, i # j. The beginning and endpoint of the ith segment are xi ~, and zi 
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and are called nodal points. On this grid ,D is approximated by a piecewise constant 
function ,u,,, and the resulting equation is solved by a collocation method. The cello- 

cation points &, i = 1, 2 ,..., N, are taken to be the midpoints of the segments Si. By 
means of projection at the collocation points we get N equations. We have, however. 
N+ 2 unknowns pN,,, EL,~,* ,... ,P~,~, ,ui, and iu.; with i~,~.~=.&(i~) and iuz” = 
P,~,(<; [ E S*), so that we need two extra equations. Following condition (15) we 
replace p,G and .D; by P,~.,$, and p,v., , i.e., 

PN+ = Pu,Kh-)~ PY = P.v(C, 13 (18) 

where [, and cN are the collocation points which are closest to the trailing edge at the 
lower and upper part of S. Let T, be the projection operator defined by piecewise 
constant interpolation at the collocation points. We have to solve the following 
equation: 

V - TvK) iu,v + T,r Pkw - iu.v.1 I= T, g- (19) 

In aerodynamics the above numerical approach is called a first-order panel method. 
In [5 1 we have put it in a functional analytic framework. Assuming the contour S to 
be sufficiently smooth (except for a small region near the trailing edge) it was shown 
that a once continuously differentiable numerical solution can be obtained by a single 
iteration 

Furthermore, it was proven that the operator K is compact on the space of essentially 
bounded functions, provided the boundary is sufficiently smooth. Since aerofoils 
(inclusive of the trailing edge) are not smooth, this property of K does not hold for 
our application. 

Multigrid Method 

The principal aim of this section is to show that Eq. (19) can be solved efficiently 
by a multigrid iterative process. In [2] we introduced multigrid methods for integral 
Eq. (1). The Jacobi relaxation was used to smooth the high-frequency errors. 
Assuming the integral operator to be compact, we were able to prove that the 
reduction factors of these multigrid methods decrease as N increases. For our 
application this nice property is completely destroyed (see Table I) because K is not 
compact. Problems with respect to the convergence of the iterative process arise in 
the neighbourhood of the trailing edge. Here the high-frequency errors are not 
removed by the Jacobi relaxation 

P N (“+ ‘) = TN g + T,K& - TN /3(&“, - ,u,$‘)~). (21) 

Inspection of the matrix corresponding to TNKT,,, reveals that the cross-diagonal 
contains elements of magnitude 1 - k + 0(1/N) as N-t co with k = (exterior trailing 
edge angle)/r. This occurrence of off-diagonal elements of about the same size as 
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TABLE I 

Number of Iterations 

Test case r 

N=64 N= 128 

J PJ PGS J PJ PGS 

N=256 

J PJ PGS 

I 0 15 4 3 13 3 2 
7712 15 9 9 4 7 5 

II 0 15 8 8 13 5 5 
42 15 10 9 9 7 6 

III 0 >25 4 3 >25 3 3 
42 >25 12 9 19 9 6 

IV 0 >25 11 8 >25 7 4 
742 >25 13 10 >25 10 8 

11 3 2 
2 4 2 

11 3 2 
6 4 2 

>25 3 2 
9 6 3 

>25 6 4 
>25 7 3 

No&. J, Jacobi; PJ, Paired Jacobi; PGS, Paired Gauss-Seidel. 

diagonal elements explains why Jacobi relaxation does not work well. Therefore we 
apply another relaxation scheme, which we call paired Gauss-Seidel relaxation. In 
order to explain this scheme we first rewrite (21) as 

for i = l,..., N. 

We obtain the paired Jacobi relaxation (PJ) scheme by removing the cross-diagonal 
to the left-hand side 

(“+ ‘1 - kij&yi’ l) = gi + f ki,$/ - &(&\, -&.y’,), 
1uN.i 

I=1 
l#j 

for i = 1, 2,..., N/2 and j = N + 1 - i. A similar expression is obtained for i = j. As a 
result we have to solve $N systems of equations of dimension 2. Substituting the new 
values of ,u~,~ and pNqj as soon as they are available we obtain the paired 
Gauss-Seidel (PGS) relaxation scheme. For i = 1, 2,..., N/2 and j = N + 1 - i we 
define 

Vii = v, for i< 1 <j, 

=v+ 1, for 1 <i and 1> j. 

We solve simultaneously the equations 

(“+I) -k,,&,“’ = gi + f &,pfy,‘j) 
pN,i -Pi@$?N -fiFl) 

I=1 

/ti 
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and 

for i = 1, 2,..., N/2 andj=N+l-i, with F=v for i=l and F=v+l for 1< 
i < N/2. The matrix elements kii can be easily calculated. Let 

then 

kij = #ij > 

kii = #ii + 1, 

kii = ~ii - 1, 

for i # j, 

if #ij < 0, 

if dii > 0. 

Let X, be a short notation for the space XN, of piecewise constant functions of 
dimension N,. We introduce a sequence of spaces {X, 1 p = 0, l,..., I) with N,, = 
32~2~ such that X,cX,c... c X,. The corresponding projection operators are 
denoted by T,. In the context of multigrid iteration the subscript p is called level. 

The calculations have been performed for several Kirmin-Trefftz aerofoils with 
thickness 6 = 0.05 and length I = 1.0. These aerofoils are obtained from the circle in 
the z-plane, zz = ceig, by means of the mapping 

z=f(z)=(rt.- z$/(.z-c(6-iy))k-‘, 

where y measures the camber and k the exterior trailing edge angle and 

c = 21(6 + (1 - y’)“‘)“P’/(2(1 - y2)“2)$ z, = c(( 1 - y2)“2 - iy). 

Partition of the boundary on level p. Let the interval (0, 27r] be divided into N, 
uniform segments with nodal points { Oj 1 j = 0( 1) N,}. The nodal and collation points 
in the z plane follow from f(ce@j) and f(ceiBj+1/2), respectively, Oj+ ,,2 being the 
midpoint of subinterval [Oj, Oj+ ,I. The collocation points defined in this way are 
situated at the boundary and do not coincide with the collocation points of the other 
levels. Therefore, the elements of the matrix .Zp, p = 0, l,..., I, corresponding to 
TpKTp have to be computed for all levels. Asymptotically for I-+ co, the number of 
kernel evaluations is $Nf, when the values are computed once and stored. We have 
taken the following test cases: 

(1) k= 1.90 and y=O, 
(II) k = 1.90 and y = sin 0.05, 
(III) k = 1.99 and y = 0. 
(IV) k = 1.99 and y = sin 0.05. 
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The velocity 1/ of the undisturbed flow is taken to be (cos 7, sin 7) with 7 the angle of 
incidence. For the above test cases we give numerical results for 7 = 0 and 7 = n/2. 

Algorithm. The approximate solution of (19) is obtained by the multigrid method 
defined in the ALGOL-68 program given in TEXT 1. 

PROC mulgrid = (INT p, u, VEC u, g) VOID: 
IFp=O 
THEN solve directly (u, g) 
ELSE FOR i TO u 

DO relax (u, g); INT n = UPB u; 
VECresidu=g-u+.~;,*u-P,*(u[n]-ull]); 
VEC urn := O,- , , gm := restrict (residu); 
mulgrid (p - 1, v, urn, gm); 
u := u + interpolate (urn); 
relax (u, g) 

OD 
FI 

TEXT 1. Multigrid Algorithm 

For reasons of efficiency, the number of coarse grid corrections (integer v) must be 
less than 4. For v = 1 and v = 2 we obtain the so-called V- and W-cycle, respectively. 
Here we choose r = 2. For the 3-D problem of flow around an ellipsoid we take 
v = 1. The interaction between the grids is defined by the procedures restrict and 
interpolate which are specified as follows: Let n be the upper bound of VEC u, then: 

restrict (u)[i] := 0.5 * (~12 *i-l]+u(2*i]),i=l(l)n/2, 
interpolate (u)(2 * i] := interpolate (u)[2 * i- l] := u[ij, i= l(l)n. 

On level 0 the system of equations is solved by Gaussian elimination. For relax we 
take Jacobi, paired Jacobi, and paired Gauss-Seidel relaxation, respectively. We start 
our algorithm on level 0. The interpolation to level p (p > 1) of the approximate 
solution from level p - 1 is used as the initial guess of the multigrid process at 
level p; truncation occurs when the residual is less than 10ph. Let VEC gp denote the 
restriction of g to the collocation points of level p. In ALGOL-68 notation this 
algorithm reads 

solve directly (u,, g,); 
FORpTO3 
DO 24, := interpolate (Q; 

FOR i TO 25 WHILE residual > 1O-6 
DO mulgrid (p, 1, u,, g,) OD; 
zig .- *- COPY u, 

OD; 
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TEXT 2. Implementation of the Full Multigrid Algorithm 

In Table I we compare the performance of the multigrid processes using various 
relaxation schemes. From this table we conclude that the multigrid method defined by 
Jacobi relaxation is not acceptable (it converges too slowly). The process defined by 
PGS relaxation turns out to be the most efficient. Furthermore, we draw the following 
conclusions: 

(1) the number of iterations decreases as N increases and 

(2) on the highest level (N= 256) only a few iterations are necessary. 

Calculation of Potential Flow around an Ellipsoid 

The numerical approach to finding the solution of (13) is connected with the shape 
of the kernel function. Application of the collocation method in the space of 
piecewise constant functions leads to moment integrals, which consist of the 
calculation of solid angles. We consider the ellipsoid defined by 

{x2 + y2 + z2 = 1. 

The velocity of the undisturbed flow is given by W = (1, 0,O). The partition of the 
ellipsoid into panels is carried out as follows: First we divide the surface into N rings 
by planes orthogonal to the z-axis. Next each ring is divided into N* trapeziform 
segments. The spherical caps are divided into N * triangle-shaped segments. We 
denote these segments by S,, i= l,..., N andj= l,..., N*. The collocation points are 
chosen to be the “midpoints” of these segments and are situated at the surface. The 
solid angle subtended at [ by S, with [ 6Z Si,i is given by 

In contrast with 2-D, in general these integrals cannot be evaluated analytically. We 
approximate S, by one or two flat planes. The solid angles subtended by such planes 
can be evaluated analytically. 

Multigrid Method 

The different grids are related by N, = 4 X 2” and Nz = 4 X 2”. Putting p, = 0, we 
use the algorithm given in TEXT 1 with r = 1. Analogously to 2-D we define the 
procedures “solve directly,” “restrict,” and “interpolate” by Gaussian elimination, 
weighted injection, and piecewise constant interpolation, respectively. For “relax” we 
take the Jacobi relaxation scheme. Assuming the surface to be smooth, Wolff 16 1 has 
analysed this multigrid method. He has proven that the reduction factor of the 
multigrid process is less than ch” for h + 0, where h and a are a measure for the 
mesh size and the smoothness of the surface, respectively. For the ellipsoid a = 1. 
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TABLE II 

Potential Flow around an Ellipsoid: Multigrid Method” 

Iter. 

1=2; N,= 16, NT= 16 

Residual Red. factor Iter. 

1=3:N,=32,N,*=32 

Residual Red. factor 

1.17 x 10-l I 4.56 x IO ’ 
2.04 x 10-j 4.13 x lo- * 2 4.34 x 10 J 1.67 x 10 ’ 
7.75 x 10-s 1.40 x 10-2 3 8.48 x 10mh 6.98 x 10 ’ 
1.89 x 1Om6 4.63 x 10m2 4 9.93 x 10 H 2.56 x 10 ’ 
6.54 x 10.’ 2.36 x IO- * 

Mean red. factor: 2.83 x 10m2 Mean red. factor: 1.44 x 10 ’ 
Operation count: 10.68 Operation count: 8.53 

Nofe. The ellipsoid is given by fx’ + y* + z2 = I; fl is parallel to the x axis. 
’ N,, = 4. N,* = 4. 

Numerical Results 

In Tables II and III, we give the residuals and the observed reduction factors 

with I/ + I/ the supremum norm. We also give the mean reduction factor 

rf= IX1 ‘li 
I I 

Ilk 
i=l 

TABLE III 

Potential Flow around an Ellipsoid: Jacobi Iterative Process 

Iter. 

N= 16, N* = 16 N=32,N*=32 

Residual Red. factor Iter. Residual Red. factor 

21 

I.73 
8.05 x 10. ’ 4.51 x lo- 
3.82 x 10-l 4.68 x lo- 
1.83 x 10-l 4.75 x lo- 
8.75 x lo-* 4.78 x IO- 
4.20x IO.* 4.79 x IO- 
2.01 x 1om2 4.80 x IO- 

6.94 x IO- 4.80 x IO- 

Mean red. factor: 4.77 x 10 ’ 
Operation count: 2 1 

8 

27 

2.15 
1.20 5.44 x 10 ’ 

6.72 x 10-l 5.57 x lo- ’ 
3.79 x 10 I 5.62 x 10 ’ 
2.14 x 10-l 5.64 x 10 ’ 
1.21 x 10 ’ 5.65 x 10 ’ 
6.85 x 10 ? 5.65 x 10 ’ 
3.88 x 10 * 5.66 x 10 ’ 

1.79 x lo- ’ 5.66 x 10 ’ 

Mean red. factor: 5.64 x 10 ’ 
Operation count: 27 

Note. The ellipsoid is given by fx’ + y2 + z* = 1; V is parallel to the x axis. 
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and the operation count expressed in work units. One work unit is defined by (total 
n;imber of multiplications)/(N, x NT)2 with I the highest level. We only take into 
account matrix-vector multiplications and the direct solution on the coarsest grid for 
which we count {(No X N$)3 multiplications. Tables II and III enable us to draw the 
following conclusions: 

(1) Comparing the results obtained with I = 2 and 1= 3 we see that the mean 
reduction factor of the multigrid method has been decreased by a factor of 2, which is 
in agreement with the theoretical results of Wolff ]6] and 

(2) the multigrid method is much cheaper than the Jacobi iterative process. 

CALCULATION OF OSCILLATING DISK FLOW 

The rotating flow due to an infinite disk performing torsional oscillations at an 
angular velocity Q sin wr in a viscous fluid otherwise at rest involves two relevant 
length scales, (1) the Von Kirmin layer thickness (v/L))“‘, where r is the kinematic 
viscosity and (2) the Stokes layer thickness (v/m)“‘. By means of the Von Karmin 
similarity transformations, the velocities (u, u, w) in a cylindrical coordinate system 
(Y, 4, x) can be written as 

24 = Qrf(z, t), u = lhg(z, t), w = -2(2vcu)“z h(z, t), 

where z = (Q’/~vc(~)“~ x and t = or. In that case the Navier-Stokes equations reduce 
to partial differential equations (2)-(4). Apparently the oscillating disk flow is 
characterized by the parameter E = 0/o, which determines the ratio of the Stokes 
layer thickness to the Von Kirmin layer thickness. 

For the high-frequency flow (E G 1) analytical solutions are found in the literature 
in the form of series expansions in terms of E. This type of flow consists of an 
oscillatory inner layer (i.e., Stokes layer) near the rotating disk and a secondary outer 
layer (i.e., Von Karman layer). Using a multiple scaling technique, Benney ]7] was 
able to find series expansions valid throughout the region of flow. The first-order 
terms of the solution are given by 

g(z, t) = em”’ sin(t - Z/F), f(z, t) - ce 4uz for z+ co, (22) 

with a = 0.265. In [3] we used this technique to determine the axial inflow at infinity 
up to the term with e3 

h(m, 0) = a& + (ab + &(d2 - I>1 E2 + WE’), (23) 

with b = -0.207. Inspection of (22) reveals that problem (2)-(6) is singularly 
perturbed and for a fixed 1 the solution contains more and more high frequency 
components as e + 0. 
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In this paper we discuss two computational methods to find the periodic solution 
satisfying (6). The first method is based on simulation of the physical process by 
taking the state of rest as an initial condition and eliminating the transient effects by 
integration in time. In mathematical terminology this process can be interpreted as 
Picard’s method for computing a fixed point. Let the velocity vector be 

Denote by (v(z, t); v,,) the solution of the usual initial value problem (2)-(j) with 
initial data 

w(z, 0) = 27()(z). (24) 

Assume that the initial data rO belong to a suitable class 9. Define a map of ii’ into 
itself by the equation 

K,(v,) := (I.$., 2x); v,>, (25) 

being the solution of (2t(5) and (24) at t = 27~. Since (2)-(4) is a parabolic system, 
KC may be expected to have a smoothing influence, just as the integral operators of 
the Fredholm equations studied in [2]. In operator notation simulation of the 
physical process is written as the Picard sequence 

vitl = Kdvi) with v. = 0. (26) 

Periodic condition (6) can be rewritten as 

v = K,(v), w E JY. (27) 

We remark that K, is a nonlinear operator. For E < 1, (26) converges slowly. 
Therefore we have devised another method. Since Eq. (27) has a superficial resem- 
blance with a Fredholm equation of the second kind, we have applied a multigrid 
method to (27). 

Numerical Approach 

This section is divided into two parts: 

(1) the numerical solution of initial boundary value problem (2)(5) with 
initial data (24) and 

(2) numerical methods for finding periodic solutions satisfying (6). 

Discretization of the Initial Boundary Value Problem 

Consider partial differential equations (2)-(4) with boundary conditions (5) and 
initial data (24). To this problem we apply implicit finite difference techniques in 
combination with an appropriate stretching function for the construction of the 
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computational grid. In calculations the boundary conditions at infinity are applied at 
a finite value z = 1 

j-(1, t) = g(l, t) = 0. (28) 

We want to resolve the flow structure near the disk with a limited number of mesh 
points. Therefore, taking (22) into account, we transform the z coordinate by 

z(x) = 1(&X + (1 - &)X3), x E IO, 11. (29) 

and we take the mesh covering of the new range 0 ,< x < 1 uniform with step size 
Ax = l/N. Integration in time is done by the Euler backward formula 

g, = k+ I- d/At with At = 277/T. 

The right-hand sides of (2) and (3) are discretized by central differences at t = t,, , . 
The left- and right-hand sides of (4) are integrated by means of the midpoint and 
trapezoidal rule, respectively. The resulting nonlinear system of finite difference 
equations is solved by means of Newton iteration, which is terminated if the residual 
is less than 10p6. For further details see [ 3 1. 

Numerical Methods for Computing Periodic Solutions 

Using the above finite difference approach we define the discrete counterpart of the 
operator K, and the velocity vector v by .j%/E:N,T,, and vN, respectively. In discrete 
operator notation the periodic condition reads 

In the present paper we propose two computational methods to solve (30): 

(A) simulation of the physical process by Picard iteration and 

(B) a multigrid method. 

In the first method the parameters E, N, T, and 1 are fixed. In the second method 
the parameters N and T are taken from a sequence {(N,, T,)), p = 0, I,..., L such that 
withp=L we have N,=N, T,=Tand withp<q<L we have N,<N,, T,<T, 
(i.e., a smaller p corresponds with a coarser discretization). 

(A) Simulation of the physical process. We take the state of rest (r,$’ = 0) as 
an initial condition. The transient effects are eliminated by Picard’s method 

(it I) 
VN = .rp* ',=,I (Y$'). (31) 

The iteration index i counts the number of periods that are calculated. This process is 
truncated if the residual 11 Y:) - .p ,.,,,,,(r$)ll is less than 0.5 x 10m4. Here 
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(B) Multigrid method. We introduce a sequence of grids with N, = 20 x 2/’ 
and T, = 8 x 2”. The integer p is called the level. We replace the subscript N,, by p, 

Denote the velocity at grid point xj on level p by v,lj] = (A, gj, hj). The addition 
~,[j] + v,[k] and the multiplication c x v,[j] are defined as usual (element by 
element). The interaction between the grids is defined by piecewise-linear inter- 
polation 

interpolate(W) [ j] 

= P[j/2], 

= 0.5 X (%[(j+ I)/21 + W[(j- 1)/2]), 

and by injection 

j = 0, 2,.... 2N, 

j = 1, 3 ,..., 2N - 1, 

restrict(%)1 j] = W[2j], j = 0, I,..., N/2, 

where N is the upper bound of the velocity vector V. 
We use a multigrid method that starts on level 0 with simulation of the phsyical 

process (method A). For small values of E we apply continuation. Suppose we have 
the following s-sequence (E, / e, > E, > . . . > E, with E, = 1). At each stage of this 
continuation process we approximately solve the equation 2r0 =.iF/,:O(~~o) by (31) until 
the residual is less than 0.5 x 10p3. As the initial guess of (31) we take the solution 
of the previous stage (E = E[- ,). For E = F, we take the state of rest. Denote the 
solution of this continuation method by v~(E~, E, ,..., cm). 

Since (30) is a nonlinear equation, it is only solved approximately. Let eb be an 
approximation to the solution v’p of (30) on level p. We define the defect of %p by 

The multigrid method is given by the ALGOL-68 program in TEXT 3, where VELO 
is a mode for the vector of unknowns: 

MODE VELO = STRUCT(VEC f, g, h). 

PROC compute periodic solution = (# to level # INT I) VOID: 
(& := Vo(Eo, E, )...) E,). 
FORjTOl 
DO di_, := ?4-, -.?Y~+,(&~,); 

?Z := interpolate(Z$ _ i); 
multigrid( j, 1, %, Oj) 

OD 
1; 
PROC multigrid = (INT m, u, REF VELO %%, VELO u) VOID: 
(IF m=O 
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THEN FOR k TO 50 WHILE residual > 6, 
DO VELO a = y - p + ,&,(%); 

residual := ]/ 4 /]; 
#:=F+OJw,*t 

OD 
ELSE FOR i TO u 

DO ;‘/ := y + .Tc:J#); 
VELO d = A,,-, - restrict(y - % + .iv,:,(%)); 
VELO w := COPY pm-, ; 
multigrid(m - 1, 2, v, d); 
# := ;‘/ + interpolate(gm- , - 2.~) 

OD 
FI 

1; 

TEXT 3. Multigrid Algorithm for the Computation of 
Periodic Solutions of Parabolic Equations 

The structure of this multigrid algorithm has been proposed by Hackbusch (8 ] for 
the numerical solution of general time-periodic parabolic problems. Here we apply it 
to the particular problem of oscillating disk flow. 

On level 0 of “multigrid” we use overrelaxation for extremely small values of c. 
The parameter wk takes the values 1, 2, and 4. Initially we put wk = 1. If the axial 
inflow converges slowly it is multiplied by a factor of 2. As soon as the residual 
increases, the value wk = 1 is restored. 

Numerical Results 

From Zandbergen and Dijkstra [9] it is known that Von Kirman’s rotating disk 
solution can be represented sufficiently accurate with 1= 12; hence we fix infinity at 
this value. We give numerical results for the following values of e: 

&,= 1, E, = 0.5, E2 = 0.1, E3 = 0.05. 

This sequence is also applied in the continuation process that is used to find an 
approximation e0 of the multigrid method, e.g., for c = 0.1 we have ;‘/ := 
z,rO(l, 0.5,O.l). For N= 160 and T = 64 we compare the performance of simulation 
of the physical process (method A) and the multigrid method (B). On the coarsest 
grid the latter method needs 20 step sizes in space and 8 step sizes in time: hence it 
uses four levels: 0, 1, 2, and 3. 

Let a work unit be defined by the computational work needed for calculating one 
Picard iterate with N = 160 and T = 64. In Table IV we compare the computed axial 
inflow at infinity with the value of its asymptotic approximation (23) for E + 0. 
Between parentheses we give the number of work units and the iteration error 
]I;‘/, -.zE:h;,T,,(%N)]]r where %‘v is the final solution. 

581/48/3-IO 
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TABLE IV 

Axial Inflow 

E Method A Method B (23) 

1.0 0.2014 
(8,4.4 x 10-s) 

0.5 0.1177 
(17,4.7 x lo-‘) 

0.1 0.0236 
(74,4.9 x lo-:) 

0.05 0.0083 
(72,4.9 x 10m5) 

0.2014 0.2360 
(6.8, 9.3 x 10-y 

0.1178 0.1253 
(7.0,3.9 x 10-y 

0.027 1 0.0262 
(7.4, 1.6 x 10m5) 

0.0137 0.0132 
(12.5, 3.3 x lo-“) 

No&. Between parentheses are the number of work units and the residual. 

On level 0 of the multigrid method we used Picard iteration (i.e., wk = 1) for 
E > 0.1. The iterative process was terminated when the residual was less than 6, = 
0.5 x 10e4. For E = 0.05 we have applied overrelaxation (1 < wk < 4) and we have 
Put &HI, = lo-‘. That is the reason why the computational work increased for this 
case. 

From Table IV we conclude that the multigrid method becomes more efficient as E 
decreases. For F = 0.1 the computational work has been reduced by a factor of 10. 
For E = 0.1 and E = 0.05 the numerical results of method A still contain a low- 
frequency error. In this case the test for termination of the physical process is not 
adequate. The process converges slowly, as can be seen from Fig. 1, in which we have 

FIG. 1. Dependence of the axial inflow on the number of periods. 
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FIG. 2. Velocity profiles. 
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FIGURE 2 (continued) 
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displayed the axial inflow as a function of the number of periods. For E = 0.05 the 
axial inflow is still increasing after 72 periods. The same phenomenon occurs on the 
coarsest grid of the multigrid method. Therefore we have applied overrelaxation. 

The results of our analysis are given in Figs. 2 and 3. The profiles of the variables 
f/c, g, and h/e are displayed in Fig. 2. We see that there is an oscillatory boundary 
layer. For smaller values of E (see Figs. 2c and d) the azimuthal component of 
velocity (g) is confined to this boundary layer and the radial and axial component of 
velocity (resp. f and h) persist outside this layer. The results for the quantities 
&gZ(O, t),fi(O, t) and h(co, t)/& are displayed in Fig. 3. Comparing these figures we see 
that the fluctuations in h(co, t) decrease as E + 0. This means that outside the 
boundary layer the fluid motion becomes stationary (i.e., the outer flow does not 
depend on t). These numerical results are in agreement with the analytical solutions 
of Benney 17 1. 

Finally, from the results just presented we conclude that for the computation of 
periodic solutions of the single disk problem for F < 1, the multigrid method is 
preferable, whereas for F > 1 simulation of the physical process may be employed. 
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